Mono-, Bi- and Trinuclear Bis(diphenylarsino)methane Gold Complexes. Crystal and Molecular Structure of $[{(C_6F_5)_3Au(Ph_2AsCH_2AsPh_2)}_2Ag(OClO_3)]^*$

ANTONIO LAGUNA, MARIANO LAGUNA, JAVIER FAÑANAS

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Saragossa, Spain

PETER G. JONES and CHRISTA FITTSCHEN

Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, F.R.G.

(Received April 2, 1986)

Abstract

Addition of bis(diphenylarsino)methane (dpam) to neutral or cationic gold(1) or gold(III) complexes containing weakly coordinating ligands leads to the formation of mononuclear { $R_3Au(dpam)$, $R_2ClAu-(dpam)$, [$R_2Au(dpam)$]ClO₄ ($R = C_6F_5$)} or binuclear complexes {RAu(dpam)AuR, [$Au_2(dpam)_2$]-(ClO₄)₂}. Mixed gold(III)-gold(I) compounds can be synthesized either by oxidation of the gold(I) complexes or from mononuclear gold(III) derivatives. Reaction of $R_3Au(dpam)$ with ClAu(tht), [$Au(tht)_2$]-ClO₄ or AgClO₄ leads to the trinuclear complexes [{ $R_3Au(dpam)$ }_2Au]X (X = [$AuCl_2$] or ClO₄) or [{ $R_3Au(dpam)$ }_2Ag(OClO₃)], respectively. The structure of the silver complex has been determined by X-ray crystallography.

Introduction

Although in recent years the chemistry of the bis-(diphenylphosphino)methane ligand has received a great deal of attention [1] and several gold derivatives have been prepared [2-4], no systematic study of the bis(diphenylarsino)methane (dpam) ligand in organometallic gold chemistry has been carried out until now.

In the present paper we describe the preparation of (a) mononuclear gold(III) complexes with uniand bidentate dpam, (b) binuclear gold(I), gold(III), and mixed gold(III)-gold(I) complexes with dpam as bridging ligand, and (c) trinuclear mixed gold(III)-gold(I) or gold(III)-silver(I) complexes with bridging dpam.

Experimental

The instrumentation employed and general experimental techniques were as described earlier [5]. The yields, melting points, C, H and Au analyses, conductivities and molecular weights of the novel complexes are listed in Table I.

Preparation of the Complexes

All the reactions were run at room temperature.

$(C_6F_5)_3Au(dpam)(1)$

A solution of $(C_6F_5)_3Au(tht)$ [6] (0.166 g, 0.21 mmol) and dpam (0.099 g, 0.21 mmol) in 25 ml of dichloromethane was stirred for 5 min. Concentration to *ca*. 5 ml and addition of hexane (20 ml) led to the precipitation of white crystals of **1**.

$(C_6F_5)_2$ ClAu(dpam) (2)

To a solution of $Bu_4N[(C_6F_5)_2AuCl_2]$ [7] (0.652 g, 0.76 mmol) in 50 ml of diethylether was added AgClO₄ (0.158 g, 0.76 mmol); the mixture was stirred for 90 min under exclusion of light. The precipitated AgCl and [Bu₄N]ClO₄ were removed. To the resulting solution was added dropwise a solution of dpam (0.359 g, 0.76 mmol) in 30 ml of diethylether and stirring continued for 30 min. Evaporation to ~5 ml and addition of hexane (20 ml) led to the white complex 2.

$[(C_6F_5)_2Au(dpam)]ClO_4(3)$

To a solution of complex 2 (0.250 g, 0.24 mmol) in 30 ml of dichloromethane was added $AgClO_4$ (0.050 g, 0.24 mmol); the mixture was stirred for 90 min under exclusion of light. Removal of AgCl, concentration of the filtrate to *ca*. 2 ml, and subsequent slow addition of diethyl ether (20 ml) led to the crystallization of complex 3.

^{*}Dedicated to Professor Rafael Usón on his 60th birthday.

[©] Elsevier Sequoia/Printed in Switzerland

TABLE I. Analytical Data for Complexes

Complex ^a		Yield (%)	Analysis, found (calculated) (%)			Λ _M ^b	Molecular weight ^c , found (calculated)	Melting	
			С	н	Au			(°C)	
1	R ₃ Au(dpam)	90	43.75	1.9	16.65	0	1091	197	
			(44.1)	(1.9)	(16.85)		(1170)		
2	R ₂ ClAu(dpam)	82	42.45	2.35	19.25	0	1069	179	
	-		(42.75)	(2.15)	(18.95)		(1039)		
3	$[R_2Au(dpam)]ClO_4$	76	39.65	1.95	17.45	108		100(d)	
			(40.3)	(2.0)	(17.85)				
4	$R_2 Au(AsPh_2CHAsPh_2)$	45	43.65	2.65	20.5	5	997	154(d)	
			(44.35)	(2.1)	(19.65)		(1002)		
5	RAu(dpam)AuR	97	36.95	1.95	33.5	0	1191	189(d)	
			(37.0)	(1.85)	(32.8)		(1200)		
6	$[Au_2(dpam)_2](ClO_4)_2$	92	39.15	2.9	25.15	196		228(d)	
			(39.05)	(2.9)	(25.6)				
7	RCl ₂ Au(dpam)AuR	82	35.4	1.8	31.7	20	1248	136	
			(34.95)	(1.75)	(31.0)		(1271)		
8	$[Cl_2Au(dpam)_2Au](ClO_4)_2$	90	37.35	2.85	24.35	224		130(d)	
			(37.35)	(2.75)	(24.5)				
9	$[Cl_2Au(dpam)_2AuCl_2](ClO_4)_2 \cdot 1/2OEt_2$	93	36.55	2.9	22.45	198		135(d)	
-			(36.4)	(3.1)	(22.95)				
10	$R_3Au(dpam)AuR_3$	94	39.5	1.2	21.2	3	1779	189(d)	
			(39.2)	(1.2)	(21.1)		(1868)		
11	[R ₃ Au(dpam)AuPPh ₃]ClO ₄	62	43.15	2.5	22.8	116		199(d)	
		_	(42.35)	(2.15)	(22.8)				
12	[R ₃ Au(dpam)Au(dpam)AuR ₃][AuCl ₂]	90	37.4	2.05	28.7	80	2554	138	
	[(36.8)	(1.6)	(28.05)		(2808)		
13	[R ₂ Au(dpam)Au(dpam)AuR ₂]ClO ₄	81	39.05	1.85	22.3	107	. ,	168(d)	
	[](••	(39.15)	(1.7)	(22.4)			. /	
14	$R_2 Au(dnam) Ag(OCIO_2)(dnam) AuR_2$	85	40.5	1.7	20.35	120		125(d)	
	C. C. Paning (COLOS) (CPanin Auros		(40.55)	(1.75)	(19.7)	1-0			
			(40.00)	(1.75)	(1).//				

^cIn chloroform.

 $(C_6F_5)_2 Au(Ph_2AsCHAsPh_2)(4)$

To a suspension of NaH (0.3 g, 12.4 mmol) in diethylether (15 ml) was added complex 3 (0.298 g, 0.27 mmol). After 1 h stirring, the excess of NaH and the NaClO₄ precipitated were removed by filtration. Evaporation of the yellow filtrate to *ca*. 2 ml and addition of hexane under nitrogen led to the yellow complex 4.

^bIn acetone, ohm⁻¹ cm² mol⁻¹.

$C_6F_5Au(dpam)AuC_6F_5(5)$

 $a_R = C_6 F_5$.

To a solution of $C_6F_5Au(tht)$ [8] (0.767 g, 1.70 mmol) in 50 ml of dichloromethane was added dpam (0.401 g, 0.85 mmol); the mixture was stirred for 30 min. Concentration to *ca*. 5 ml and addition of hexane (20 ml) gave a white solid of **5**, which was recrystallized from diethylether hexane.

$[Au_2(dpam)_2](ClO_4)_2(6)$

To a dichloromethane solution (35 ml) of $[Au(tht)_2]ClO_4$ [9] (0.142 g, 0.3 mmol) was added dpam (0.142 g, 0.3 mmol); the mixture was stirred for 30 min. Concentration to *ca*. 5 ml and addition of hexane (20 ml) gave a white solid of **6**.

 $(C_6F_5)Cl_2Au(dpam)Au(C_6F_5)$ (7) and $[Cl_2Au-(dpam)_2Au](ClO_4)_2$ (8)

1.2 ml of chlorine solution in CCl_4 (0.1 M) was added to a dichloromethane solution (15 ml) of complex 5 (0.144 g, 0.12 mmol) or 6 (0.185 g, 0.12 mmol). The solution instantaneously turned orange but rapidly became yellow or colourless. Thereafter the solution was vacuum evaporated to *ca*. 5 ml. Addition of hexane (20 ml) gave a yellow (7) or white (8) solid.

$[Cl_2Au(dpam)_2AuCl_2](ClO_4)_2(9)$

1.9 ml of chlorine solution in CCl_4 (0.1 M) was added to a dichloromethane solution (15 ml) of complex 6 (0.140 g, 0.09 mmol). The solution was stirred for 30 min and thereafter concentrated to 5 ml. Addition of diethylether (20 ml) precipitated 9 as a yellow solid.

$(C_6F_5)_3Au(dpam)Au(C_6F_5)_3$ (10) and $[(C_6F_5)_3-Au(dpam)AuPPh_3]ClO_4$ (11)

To a solution of complex 1 (0.117 g, 0.1 mmol) in 20 ml of dichloromethane was added $(C_6F_5)_3Au$ -

(OEt₂) [6] (0.074 g, 0.1 mmol) or a solution of (O₃ClO)AuPPh₃ [10] (0.1 mmol) in dichloromethane (20 ml), and the mixture stirred for 30 min. Evaporation to \sim 5 ml and addition of hexane (20 ml) led to the white complexes 10 or 11.

$[(C_6F_5)_3Au(dpam)Au(dpam)Au(C_6F_5)_3]X$ {X = [AuCl₂] (12) or ClO₄ (13)} and [(C₆F₅)₃Au-(dpam)Ag(OClO₃)(dpam)Au(C₆F₅)₃] (14)

To a solution of complex 1 (0.164 g, 0.14 mmol) in 15 ml of dichloromethane was added ClAu(tht) [8] (0.044 g, 0.14 mmol), $[Au(tht)_2]ClO_4$ [9] (0.034 g, 0.07 mmol) or AgClO₄ (0.015 g, 0.07 mmol) and the mixture was stirred for 5 min [(12) or (13)] or 2 h under exclusion of light [(14)]. Thereafter the solution was evaporated to *ca*. 5 ml and addition of hexane (20 ml) gave white solids of 12, 13 or 14.

Crystal Structure Determination of 14

Colourless single crystals were obtained by diffusion of diethyl ether into a dichloromethane solution.

Crystal data

 $C_{86}H_{44}AgAs_4Au_2ClF_{30}O_4$, $M_r = 2548$. Monoclinic, $P2_1/n$, a = 13.103(2), b = 37.886(7), c = 17.199(3) Å, $\beta = 98.19(2)^\circ$, U = 8451 Å³, Z = 4, $D_x = 2.00$ g cm⁻³, λ (Mo K α) = 0.71069 Å, μ (Mo K α) = 5.4 mm⁻¹, F(000) = 4864, crystal size 0.27 × 0.23 × 0.23 mm.

Data collection and processing

Stoe-Siemens four-circle diffractometer, 12661 profile-fitted intensities $(2\theta_{\max} 45^{\circ})$, 11014 unique, 7549 with $F > 4\sigma(F)$ used for all calculations. Absorption correction based on ψ -scans; transmissions 0.57-0.64. Cell constants refined from 2θ values of 44 reflections in the range $20-23^{\circ}$.

Structure solution and refinement

Heavy-atom method; least-squares refinement on F to R 0.057, R_w 0.047 (all atoms except C and H anisotropic; aromatic rings as rigid groups with C-C 1.395 Å, C-H (where applicable) 0.96 Å, C-C-C and H-C-C 120°; methylene H using riding model with C-H 0.96 Å; U(H) = 1.2 U(C); weighting scheme $w^{-1} = \sigma^2(F) + 0.0002F^2$; 555 parameters). Program system SHELXTL. Final atomic coordinates and derived parameters are presented in Tables II and III.

Results and Discussion

Mononuclear Complexes

The action of the diarsine (dpam) on gold(III) complexes leads to mononuclear derivatives. Thus, displacement of a weakly coordinating ligand, such as tetrahydrothiophen (tht) (eqn. (1)),

TABLE II. Atom Coordinates ($\times 10^4$) and Isotropic Temperature Factors ($\mathring{A}^2 \times 10^3$) for 14

	x	у	Ζ	U ^a
Au(1)	8547.8(.4)	1514.5(.1)	3768.3(.3)	36(1)*
Au(2)	2297.1(.4)	929.7(.1)	9197.4(.3)	37(1)*
Ag	4864(1)	1217.9(.3)	5952(1)	57(1)*
As(1)	6977(1)	1605.7(.3)	4371(1)	40(1)*
As(2)	3691(1)	997.1(.3)	8381(1)	37(1)*
As(3)	6129(1)	1724.2(.4)	6110(1)	41(1) [*]
As(4)	4221(1)	6/8.3(.3)	0388(1)	41(1)* 46(2)
C(1)	9457(6)	13/6(3)	4043(4)	40(3)
C(2)	9/1/	1911	5990	04(4)
C(3)	10293	1940	5009	82(5)
C(4)	10252	1047	6028	82(5)
C(5)	0775	1312	5285	69(4)
C(0)	9773	1270	3263	$\frac{1}{4}$
C(n)	10402	1721	3101	68(4)
C(0)	11371	1657	2750	79(5)
C(3)	11623	1313	2561	80(5)
C(10)	1025	1032	2722	81(5)
C(12)	10117	1092	3072	62(4)
C(12)	7692(6)	1435(2)	2671(4)	41(3)
C(13)	7607	1698	2071(4)	55(4)
C(15)	7068	1632	1353	62(4)
C(16)	6614	1303	1181	53(4)
C(17)	6699	1040	1753	58(4)
C(18)	7239	1106	2498	48(3)
C(19)	2992(6)	1300(2)	9999(4)	44(3)
C(20)	2842	1655	9804	53(4)
C(21)	3270	1916	10323	87(5)
C(22)	3847	1821	11038	90(5)
C(23)	3997	1466	11233	68(4)
C(24)	3569	1205	10713	53(4)
C(25)	1167(5)	848(2)	9903(4)	43(3)
C(26)	421	1104	9975	52(4)
C(27)	- 374	1032	10412	65(4)
C(28)	-423	705	10776	75(5)
C(29)	322	449	10703	67(4)
C(30)	1118	521	10266	60(4)
C(31)	1468(6)	580(2)	8421(4)	50(4)
C(32)	1842	244	8283	47(3)
C(33)	1293	26	7719	62(4)
C(34)	369	143	7292	67(4)
C(35)	5	478	7431	64(4)
C(36)	544	697	7995	63(4)
C(38)	5319(7)	1163(2)	3658(5)	61(4)
C(39)	4743	852	3560	80(5)
C(40)	4966	573	4087	76(5)
C(41)	5765	605	4712	75(5)
C(42)	6341	916	4810	64(4)
C(37)	6118	1195	4284	44(3)
C(44)	6698(5)	2264(2)	3583(5)	55(4)
C(45)	6154	2556	3252	84(5)
C(46)	5092	2580	3258	85(5)
C(47)	4575	2310	3594	73(5)
C(48)	5120	2018	3925	60(4)
C(43)	6181	1994	3919	44(3)
C(50)	4506(7)	2223(2)	5801(5)	62(4)

(continued)

TABLE II. (Continued)

	x	у	Ζ	- U ^a
C(51)	4054	2556	5681	88(5)
C(52)	4674	2855	5684	89(5)
C(53)	5745	2822	5807	101(6)
C(54)	6197	2490	5927	85(5)
C(49)	5578	2190	5924	50(4)
C(56)	6783(7)	2052(2)	7632(6)	80(5)
C(57)	7334	2069	8387	87(5)
C(58)	8012	1798	8661	96(6)
C(59)	8139	1510	8179	99(6)
C(60)	7589	1493	7424	87(5)
C(55)	6910	1764	7150	47(3)
C(62)	2837(7)	515(2)	5191(6)	82(5)
C(63)	2062	328	4723	104(6)
C(64)	1703	10	4989	88(5)
C(65)	2119	- 22	5723	83(5)
C(66)	2894	64	6191	65(4)
C(61)	3254	382	5925	44(3)
C(68)	4970(5)	92(2)	7639(5)	51(4)
C(69)	5710	-152	7963	70(4)
C(70)	6695	-146	7745	67(4)
C(71)	6941	103	7204	71(4)
C(72)	6202	346	6880	64(4)
C(67)	5216	341	7098	46(3)
C(74)	4645(6)	1663(2)	8778(4)	53(4)
C(75)	4750	2028	8721	74(5)
C(76)	4213	2210	8084	75(5)
C(77)	3572	2026	7505	73(5)
C(78)	3467	1661	7561	53(4)
C(73)	4004	1479	8198	42(3)
C(80)	4910(5)	550(2)	9482(5)	53(4)
C(81)	5816	390	9837	71(4)
C(82)	6/54	470	9582	68(4)
C(83)	6/84	/11	89/3	72(5) 52(4)
C(84)	58/8	8/2	8618	53(4)
E(79)	4941	/91	00/3 4750(6)	41(3)
F(2)	9400(8)	2100(2)	4/39(6)	120(3)*
F(3) F(4)	10555(10)	2260(4)	0109(8)	207(8)*
F(4) F(5)	10727(0)	1071(3) 1020(4)	7047(3)	199(0)*
F(3)	10/2/(9)	1030(4)	5413(7)	101(7)*
F(0) F(0)	9332(7)	301(2)	3003(3)	$109(3)^{\circ}$
F(0)	11088(8)	1023(2)	3234(7)	175(7)*
F(3)	12475(8)	1923(3) 1238(4)	2032(0) 2252(7)	$1/3(7)^{*}$
F(10) F(11)	12475(8) 11270(7)	696(3)	2232(7)	140(6)*
F(11) = F(12)	9560(6)	825(2)	2371(0) 3225(6)	103(4)*
F(12)	9000(0)	2004(2)	3223(0) 2227(4)	73(3)*
F(15)	6980(7)	1875(2)	797(4)	104(4)*
F(16)	6091(7)	1240(3)	464(4)	104(4)*
F(17)	6257(7)	721(2)	1586(5)	95(4)*
F(18)	7293(6)	855(2)	3022(4)	62(3)*
F(20)	2285(6)	1760(2)	9149(5)	80(4)*
F(21)	3151(9)	2254(2)	10153(7)	150(6)*
F(22)	4282(9)	2063(4)	11546(7)	180(7)*
F(23)	4521(7)	1367(4)	11898(5)	158(7)*
F(24)	3680(6)	871(2)	10892(4)	90(4)*
F(26)	429(6)	1418(2)	9651(5)	77(4)*
F(27)	- 1085(7)	1267(2)	10488(6)	107(5)*
				. /

(continued)

TABLE II. (Continued)

	<i>x</i>	у	z	$U^{\mathbf{a}}$
F(28)	-1181(8)	630(3)	11181(6)	127(5)*
F(29)	288(8)	130(2)	11028(6)	120(5)*
F(30)	1815(6)	274(2)	10201(5)	87(4)*
F(32)	2728(5)	127(2)	8649(4)	60(3)*
F(33)	1662(7)	-286(2)	7546(4)	86(4)*
F(34)	-163(8)	-66(3)	6735(5)	114(5)*
F(35)	-904(6)	588(3)	7041(6)	116(5)*
F(36)	187(6)	1012(2)	8114(5)	83(4)*
C(85)	3318(9)	771(3)	7365(6)	43(3)
C(86)	7279(9)	1707(3)	5495(7)	50(4)
Cl	2666(3)	1496(1)	4935(2)	75(2)*
O(1)	1909(8)	1268(3)	4563(7)	107(6)*
O(2)	3661(7)	1398(3)	4757(6)	90(5)*
O(3)	2740(9)	1450(4)	5764(6)	132(7)*
O(4)	2457(10)	1852(3)	4714(9)	148(7)*

^aAsterisk indicates equivalent isotropic U calculated from anisotropic U.

$$R_3Au(tht) + dpam \rightarrow R_3Au(dpam) + tht$$
 (1)

$$R = C_6 F_5$$
 (1)

gives rise to the mononuclear 1, whilst $(C_6F_5)_2$ ClAu-(OEt₂) (obtained by reaction of Bu₄N[(C₆F₅)₂-AuCl₂] and AgClO₄ (1:1) in diethyl ether) reacts with dpam (eqn. (2)) to give the mononuclear 2

 $R_2ClAu(OEt_2) + dpam \rightarrow R_2ClAu(dpam) + OEt_2 \quad (2)$ 2

Complexes 1 and 2 are white, air- and moisturestable solids that are non-conducting in acetone solution and monomeric in chloroform (Table I). If the geometry around the gold centre is, as usual, square planar, the diarsine is necessarily unidentate with one uncoordinated end. Similar structures are observed for $(C_6F_5)_3Au(dppm)$ [6] and $(C_6F_5)_2$ -ClAu(dppm) [4]. The IR spectrum of compound 2 shows two bands at 815(s) and 800(s) cm⁻¹, which indicates that the C_6F_5 groups are mutually *cis*. $\nu(Au-Cl)$ cannot be assigned and is probably masked by absorptions of the dpain.

Chloride abstraction (with $AgClO_4$) from complex 2 gives a new mononuclear derivative 3, according to eqn. 3

Complex 3 is a white solid, showing two IR bands at 1100(s,br) and 620(m) cm⁻¹ characteristic [11] of the ClO₄⁻ anion and two bands at 820(s) and 805(s)

TABLE III	. Selected	Bond	Lengths	(Å)	and	Angles	(°)	for	14	ł
-----------	------------	------	---------	-----	-----	--------	-----	-----	----	---

Au(1) - C(1)	2.067(8)	Au(1)-C(7)	2.060(9)
Au(1) - C(13)	2.075(7)	Au(2)-C(19)	2.083(9)
Au(2)-C(25)	2.066(9)	Au(2)–C(31)	2.075(9)
Ag-As(3)	2.524(3)	Ag-As(4)	2.520(3)
Ag-O(2)	2.500(11)	As(1) - Au(1)	2.457(2)
As(1) - C(37)	1.914(9)	As(1)-C(43)	1.905(9)
As(1) - C(86)	1.956(12)	As(2)-Au(2)	2.469(2)
As(2) - C(73)	1.909(10)	As(2)-C(79)	1.900(8)
As(2)-C(85)	1.946(12)	As(3)-C(49)	1.917(10)
As(3)-C(55)	1.937(10)	As(3)-C(86)	1.962(14)
As(4) - C(61)	1.937(10)	As(4)-C(67)	1.943(9)
As(4) - C(85)	1.938(13)	C1O(2)	1.428(12)
Cl-O(1)	1.398(13)	C1-O(4)	1.419(15)
Cl-O(3)	1.426(12)		
As(1) - Au(1) - C(1)	91.0(3)	As(1) - Au(1) - C(7)	179.8(4)
C(1) - Au(1) - C(7)	89.1(4)	As(1) - Au(1) - C(13)	91.6(3)
C(1) - Au(1) - C(13)	177.0(4)	C(7) - Au(1) - C(13)	88.4(4)
As(2) - Au(2) - C(19)	91.0(3)	As(2) - Au(2) - C(25)	176.9(3)
C(19)-Au(2)-C(25)	89.7(4)	As(2) - Au(2) - C(31)	93.6(3)
C(19)-Au(2)-C(31)	174.4(4)	C(25) - Au(2) - C(31)	85.9(4)
As(3)-Ag-As(4)	145.5(2)	As(3)-Ag-O(2)	102.0(3)
As(4)-Ag-O(2)	111.6(3)	Au(1) - As(1) - C(37)	111.8(4)
Au(1) - As(1) - C(43)	112.3(4)	C(37) - As(1) - C(43)	108.4(4)
Au(1) - As(1) - C(86)	112.4(5)	C(37) - As(1) - C(86)	105.7(5)
C(43) - As(1) - C(86)	105.9(6)	Au(2) - As(2) - C(73)	112.8(3)
Au(2) - As(2) - C(79)	111.4(4)	C(73) - As(2) - C(79)	105.9(4)
Au(2) - As(2) - C(85)	110.7(5)	C(73) - As(2) - C(85)	107.8(5)
C(79) - As(2) - C(85)	108.0(5)	Ag - As(3) - C(49)	117.1(4)
Ag-As(3)-C(55)	114.3(4)	C(49) - As(3) - C(55)	102.7(5)
Ag - As(3) - C(86)	117.4(5)	C(49) - As(3) - C(86)	103.9(6)
C(55)-As(3)-C(86)	98.9(5)	Ag-As(4)-C(61)	116.4(4)
Ag - As(4) - C(67)	119.0(3)	C(61) - As(4) - C(67)	103.0(4)
Ag-As(4)-C(85)	115.3(5)	C(61) - As(4) - C(85)	95.6(5)
C(6) - As(4) - C(85)	104.2(5)	As(2)-C(85)-As(4)	126.8(7)
As(1)-C(86)-As(3)	118.4(7)	O(1)-C1-O(2)	110.6(8)
O(1)-Cl-O(3)	108.9(9)	O(2)-C1-O(3)	104.3(8)
O(1)-Cl-O(4)	111.6(8)	O(2)-C1-O(4)	109.6(9)
O(3)-C1-O(4)	111.5(10)	Ag-O(2)-Cl	112.5(7)

cm⁻¹ from the mutually cis C₆F₅ groups. The complex is a 1:1 electrolyte both in acetone (Table I) and in nitromethane; in the latter the slope *B* of Onsager's equation, $\Lambda_e = \Lambda_0 - B\sqrt{c}$ (where Λ_e = equivalent conductivity, Λ_0 = conductivity at infinite dilution, and c = equivalent concentration) [12], is 218. The structure is presumably similar to that [4] of [(C₆F₅)₂Au(dppm)]ClO₄.

The reaction of complex 3 with NaH renders yellow solutions, from which the bis(diphenylarsino)methanide complex 4 can be isolated upon partial evaporation (eqn. (4)). The yellow solid is stable at room temperature under nitrogen, but in solution it slowly decomposes to give gold(I) complexes. It is non-conducting in acetone and monomeric in chloroform

The IR spectrum of 4 shows no ClO_4^- band, but a new band (which was not present in the starting perchlorato complex) appears at $1265(s) \text{ cm}^{-1}$. This absorption may be characteristic for the methanide system.

Binuclear Complexes

The tetrahydrothiophen in $C_6F_5Au(tht)$ or $[Au(tht)_2]ClO_4$ can be easily displaced by dpam to give binuclear gold(I) complexes (eqns. (5) and (6))

 $2 \operatorname{RAu(tht)} + dpam \longrightarrow A_{u} A_{u} A_{u} + 2 \operatorname{tht} (5)$ $2 \left[\operatorname{Au(tht)}_{2}\right] \operatorname{CIO}_{4} + 2 dpam \longrightarrow \left[\begin{array}{c} \operatorname{Ph}_{2} \operatorname{As} \\ A_{u} & A_{u} \\ R & R \end{array} \right] \left[\operatorname{Ph}_{2} \operatorname{As} \\ \left[\operatorname{Ph}_{2} \operatorname{As} \\ A_{u} & A_{u} \\ I & I \\ Ph_{2} \operatorname{As} \\ A_{u} & A_{u} \\ I & I \\ Ph_{3} \operatorname{As} \operatorname{Ph}_{2} \\ A_{u} & A_{u} \\ I & I \\ Ph_{3} \operatorname{As} \operatorname{Ph}_{2} \\ A_{u} & A_{u} \\ I & I \\ Ph_{3} \operatorname{As} \operatorname{Ph}_{2} \\ A_{u} & A_{u} \\ I & I \\ Ph_{3} \operatorname{As} \operatorname{Ph}_{2} \\ A_{u} & A_{u} \\ I & I \\ Ph_{3} \operatorname{As} \operatorname{Ph}_{2} \\ A_{u} & A_{u} \\ I & I \\ Ph_{3} \operatorname{As} \operatorname{Ph}_{2} \\ I & I \\ I &$

The phosphorus analogue of 6 has recently been reported [13].

6

Complexes 5 and 6 are white, air- and moisturestable solids at room temperature. Acetone solutions of 5 are non-conducting, whilst 6 is a 2:1 electrolyte both in acetone (Table I) and in nitromethane; in the latter the slope B of Onsager's equation, $\Lambda_e = \Lambda_0 - B\sqrt{c}$, is 760 [12]. The IR spectrum of 6 shows two bands at 1100(s,br) and 625(m) cm⁻¹ from [11] the ClO₄ anion.

Addition of chlorine (1:1 molar ratio) to dichloromethane solutions of **5** or **6** give orange solutions that rapidly become yellow or colourless, respectively, and from which the mixed gold(III)-gold(I) derivatives can be isolated (eqns. (7) and (8)). It is probable that both oxidation reactions start

with the formation of an intermediate gold(II) derivative [14], which rapidly isomerises.

These complexes are yellow (7) or white (8) solids. Despite its apparent non-ionic nature, complex 8 is conducting in acetone solution (Table I), probably because of equilibria such as that in eqn. (9):

$$\begin{array}{c} CH_2 \\ Ph_2As & AsPh_2 \\ | R & i \\ 2 & Au & Au \\ Ci & | & | \\ Ci & R \end{array} \xrightarrow{CH_2} \left[\begin{array}{c} CH_2 \\ Ph_2As & AsPh_2 \\ | & i \\ Au & Au \\ | & | \\ Ph_2As & AsPh_2 \\ CH_2 \end{array} \right]^{2+} + 2[R_2AuCl_2]^{-} \quad (9)$$

Its molecular weight (in chloroform) confirms the binuclear nature of 8. Its acetone solutions behave as 2:1 electrolytes. ν (Au-Cl) cannot be assigned and are probably masked by absorptions of the diarsine. When chlorine is used in a 2:1 molar ratio, a binuclear gold(III)-gold(III) compound is obtained (eqn. (10))

$$\begin{bmatrix} Au_2(dpam)_2 \end{bmatrix} (CIO_4)_2 + 2 CI_2 \longrightarrow \begin{bmatrix} Ph_2A_5 & CH_2 & A_5Ph_2 \\ Ph_2A_5 & I & I \\ CI & I & I \\ Ph_2A_5 & A_5Ph_2 \\ CH_2 & CH_2 \end{bmatrix} (CIO_4)_2$$
(10)

Complex 9 is also obtained from 8 and chlorine (1:1). It crystallizes as a yellow $\frac{1}{2}$ Et₂O solvate (as seen from the ¹H NMR spectrum) that is air- and moisture-stable. The complex is a 2:1 electrolyte in nitromethane (slope *B* of Onsager's equation, $\Lambda_e = \Lambda_0 - B\sqrt{c}$, 643). The IR spectrum shows an absorption at 350(m) cm⁻¹, assignable to ν (Au–Cl), which confirms a *trans* configuration [7].

Since in $R_3Au(dpam)$ the dpam ligand has one uncoordinated arsenic atom, this complex is capable of displacing poorly coordinated neutral (OEt₂) or anionic (OClO₃⁻) ligands from other complexes (eqn. (11)) to give binuclear derivatives

No reaction was observed with RAu(tht) or $R_3Au(tht)$; the unchanged starting products were recovered after two days at room temperature.

Complexes 10 and 11 are white solids. 10 is nonconducting in acetone solutions and the molecular weight confirms its binuclear nature. 11 is an 1:1 electrolyte in acetone solutions.

Trinuclear Complexes

The reaction between complex 1 and ClAu(tht) does not follow the normal pattern (eqn. (11)); not only is the neutral ligand tht displaced but a ligand rearrangement takes place (eqn. (12))

The same trinuclear cation is obtained by the reaction of 1 with $[Au(tht)_2]ClO_4$ (eqn. (13))

Gold Complexes of Bis(diphenylarsino)methane

Complexes 12 and 13 are white, air- and moisturestable solids that in acetone solution behave as 1:1 electrolytes. The IR spectrum of 13 shows two bands at 1100(s,br) and 625(m) cm⁻¹ from the ClO₄⁻ anion. ν (Au-Cl) in 12 are masked by diarsine absorptions.

A similar trinuclear heterometallic complex 14 can be prepared by reaction with silver perchlorate (eqn. (14)). The IR spectrum of the white, light-sensitive complex 14 shows bands at 1115(s,br), 1080(s), 1070(s), 920(m), 630(m), 625(m) and 615(m) cm⁻¹ from coordinated perchlorate [11]. It behaves as an 1:1 electrolyte in acetone solution, presumably by displacement of the perchlorate ligand by solvent molecules.

$$\begin{array}{c} OCIO_{3} \\ \downarrow \\ 2 R_{3}Au(dpam) + AgCIO_{4} \longrightarrow R_{3}Au(dpam)Ag(dpam)AuR_{3} \end{array}$$

$$\begin{array}{c} 14 \\ 14 \end{array}$$

The structure of 14 was determined by single crystal X-ray diffraction (Fig. 1). The perchlorate ligand is weakly coordinated to silver [Ag-O(2) 2.500 Å], which thus displays irregular trigonal planar coordination (angle sum 359.1°). The As-Au bond lengths of 2.457 and 2.469 Å are similar to the 2.453 Å observed in [(C_6F_5)_3Au(diars)], in which the diars ligand is monodentate [6]. An unusual feature of the structure is the very high As-C-As bond

Fig. 1. The structure of 14 in the crystal. Radii arbitrary; H and F atoms omitted for clarity.

angles of 118 and 127° , for which there is no obvious explanation; in particular, there is no evidence for deprotonation of the methylene groups.

Supplementary Material

Additional crystallographic material (complete bond lengths and angles, H atom coordinates, structure factors, temperature factors) can be ordered from the Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, F.R.G. Please quote reference no. CSD 51947 and the names of the authors and the title of this communication.

Acknowledgement

We thank the Fonds der Chemischen Industrie for financial support.

References

- 1 R. J. Puddephatt, Chem. Soc. Rev., 12, 99 (1983).
- 2 H. Schmidbaur, A. Wohlleben, F. Wagner, O. Orama and G. Huttner, Chem. Ber., 110, 1748 (1977).
- 3 H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank and G. Huttner, *Chem. Ber.*, 110, 2751, 2758 (1977).
- 4 R. Usón, A. Laguna, M. Laguna, E. Fernández, M. D. Villacampa, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1679 (1983).
- 5 R. Usón, A. Laguna, M. Laguna, A. Usón and M. C. Gimeno, *Inorg. Chim. Acta, 114*, 91 (1986).
- 6 R. Usón, A. Laguna, M. Laguna, E. Fernández, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1971 (1982).
- 7 R. Usón, A. Laguna, J. García and M. Laguna, *Inorg. Chim. Acta*, 37, 201 (1979).
- 8 R. Usón, A. Laguna and J. Vicente, J. Organomet. Chem., 131, 471 (1977).
- 9 R. Usón, A. Laguna, A. Navarro, R. V. Parish and L. S. Moore, Inorg. Chim. Acta, 112, 205 (1986).
- 10 R. Usón, P. Royo, A. Laguna and J. García, Rev. Acad. Cien. Exactas Fis-Quim. Nat. Zaragoza, 28, 67 (1973).
- 11 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 3091 (1961).
- 12 R. D. Feltham and R. G. Hayter, J. Chem. Soc., 4587 (1964).
- 13 S. Al-Baker, W.-E. Hill and C. A. McAuliffe, J. Chem. Soc., Dalton Trans., 2655 (1985).
- 14 R. Usón, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 291 (1986).